Industry4: Transfer learning based monitoring of the manufacturing process

2020-2021 tavasz


Téma leírása

This topic can be conducted both in English and Hungarian ! / A téma magyarul és angolul is felvehető !

The first step to optimize a manufacturing process is to be informed about the exact time need of each step of the process, in other words, to monitor the process. The goal is to develop a minimally invasive solution, which does not affect the daily work. To accomplish this task, a camera based solution is proposed. The camera is connected to a Raspberry PI, the PI is mounted over the manufacturing stand, so that it has a clear picture of the product being processed.

In the frames of this project, we focus on the computer vision based monitoring. It means that we would like to identify the time when a certain part gets mounted on the product. The pictures of the parts to detect and the pictures of the product are available. The proposed solution is template matching based. It means that knowing which parts are to be detected, a template matching algorithm is run periodically. The fact that a part is mounted is detected by a template match over a certain threshold.

The goal of this project is to make the template matching algorithm more robust, e.g., more tolerant to geometrical distortion, lighting changes, camera noise, etc. The robustness is reached by transforming the camera image and the image of the template into a latent space by a convolutional neural network.

The task of the student is to develop and evaluate computer vision networks with regard to high quality template matching. The plan is to extract the lower layers of published computer vision networks (ResNet, AlexNet, VGG), to basically conduct transfer learning.


  • Python programming

Maximális létszám: 3 fő